OpenFFT: An Open-Source Package for 3-D FFTs with Minimal Volume of Communication

Truong Vinh Truong Duy1,2 and Taisuke Ozaki1
1Research Center for Simulation Science, Japan Advanced Institute of Science and Technology (JAIST)
2Institute for Solid State Physics, The University of Tokyo
Email: duyvt@jaist.ac.jp, t-ozaki@jaist.ac.jp

1. Adaptive decomposition
- Translate the multi-dimensional data into one-dimensional data, and divide the resultant one-dimensional data equally to the processes using a block distribution.
- Treat the dimensions in a specific order: abc, cba, bca, etc.
- Decompose in the lowest possible dimensions depending on the number of processes.

2. Transpose-order awareness
- The adaptive decomposition provides plenty of transpose orders.
- Different order results in different volumes of communication.
- Choosing a proper order reduces the volume of communication.

3. Transpose order and volume of communication
- $(M!-1)! M$ transpose orders for M-dimensional FFTs.
- 8, 1296, and 7962624 transpose orders for 3-D, 4-D, and 5-D FFTs, respectively.
- Analyses of the volume are computationally performed.

Summary
Our OpenFFT package
- Adaptive decomposition + Transpose-order awareness.
- Decompose in the lowest dimensions, and follow the most communication-efficient transpose orders.
- Numerical results show good performance and scaling property.
- Freely available at http://www.openmx-square.org/openfft

Future work
- Extend our implementation to M-D FFTs.

Acknowledgements
CMSI and Materials Design through Computics, MEXT.

References